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Abstract. The internal vibrational states of the large bipolaron are studied by using the strong coupling
Bogolyubov-Tyablikov canonical transformation of coordinates, that takes into account the conservation of
the total momentum of the system. The complete spectrum is explicitly calculated and the electronic and
vibrational properties of the states are discussed. Moreover the comparison of the bipolaron ground state
and the binding energies with the results of the path integral and the Lee-Low and Pines methods shows
that the proposed approach provides a correct description of the large bipolaron even in the intermediate
regime of the electron-phonon interaction.

PACS. 71.38.+i Polarons and electron-phonon interactions – 78.30.-j Infrared and Raman spectra

1 Introduction

The polaron problem concerns a slow conduction electron
in an ionic crystal or in a polar semiconductor that polar-
izes the surrounding lattice. This problem has attracted
the interest of many theoretical physicists since it is one
of the simplest non relativist quantum field problem and
can be approached with a variety of methods. After the
introduction of the Fröhlich model [1] and the relative
electron-phonon coupling constant α the polaron theory
has been developed mainly in two asymptotic regimes: the
weak and intermediate regimes (α < 10 ) and the adia-
batic limit (α � 1 ). In the first case the starting point
is the Lee, Low and Pines work (LLP) [2,3] based on a
variational technique that takes into account the electron
recoil due to the emission of virtual phonons. In the sec-
ond limit the starting point is the Bogolyubov-Tyablikov
method (BT) [4–7] based on a canonical transformation
of coordinates able to conserve the total momentum of
the system even in the strong electron-phonon coupling
regime when the system tends to localize. Even today the
best available results are provided by the path integral
technique developed by Feynman [8] that gives the cor-
rect behavior in both the weak and the strong coupling
limits and provides a smooth interpolation between them.
There is a large amount of reviews where the enormous
bibliography on the polaron problem and the relative op-
tical and transport properties are discussed [9–13].

Also the formation of the large bipolaron has been
largely studied, starting from Pekar [14]. The accepted
conclusion is that the large bipolaron can form in three-
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and two-dimensions only if α is sufficiently large and the
ratio η between the static and the high frequency dielec-
tric constant is very small [15–25]. With the discovery of
superconductors with high critical temperature, the study
of the bipolaron formation has aroused new interest as a
possible elementary mechanism able to explain such phe-
nomenon [26].

In this work we extend the BT method to calculate
the internal vibrational states of the large bipolaron. In
the works by Bogolyubov [5] and Tyablikov [6] and in
successive refinements of the polaron problem (see for in-
stance [27,28]) the translational invariance of the system
was used to substitute the electron position r with two
coordinates, r = R + u, whose the first, R, describes the
free motion of the polaron and the second u the oscillation
of the electron around R; furthermore each normal mode
operator was written as a sum of a number, which indi-
cates a displaced equilibrium position, plus a new operator
which describes the ions oscillations around the displaced
equilibrium position. Since the electronic freedom degrees
of the system are increased by three, a corresponding num-
ber of new conditions on R and u must be imposed. They
are chosen so that in the Hamiltonian appears the con-
jugate operator of R, but not R. In other words they
assure the absence of forces acting at the point R [28].
The conclusion is that the polaron moves as a free parti-
cle and simultaneously the electron oscillates around R.
The displaced equilibrium positions are determined with
a variational procedure.

In this work regarding the large bipolaron we substi-
tute each electron position ri (i=1, 2) as a sum of two
vectors Ri and xi, whose the first indicates the position
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of a polaron and the second gives the positions of the
electron with respect to the polaron; as in the polaron
case each ionic displacement vector is substituted by a
number plus an operator describing the ion oscillation
around the new equilibrium position. In this case it is
necessary to write six conditions between the new coordi-
nates. They are chosen so that the final Hamiltonian de-
pends only on the conjugate operator to R =1

2 (R1 + R2),
on x = R1 −R2, on xi, but not on R. The problem be-
comes in this way similar to that of a diatomic homonu-
clear molecule, in which the polaron positions Ri play
the role of the ions coordinates and xi the electron po-
sitions. The problem is solved as in the molecular case,
determining first the electron wavefunctions and eigenval-
ues, which contain a parametric dependence on x, and
then calculating the oscillation states of the polarons in
an effective potential. We find that the minimum of this
potential depends on the polarization of the medium and
on the quantum number of the vibrational state we are
considering. We find also that the bipolaron can be ex-
cited, without breaking, in a number of vibrational states
depending on α and η. For α = 7 and η = 0 such num-
ber is four. This number increases by increasing α and
decreases when η increases. Since the ground state en-
ergy of the bipolaron has been calculated within many
different approximations, we can compare our results with
the known data to check the validity of the proposed ap-
proach. Other works [20,21] have shown that the lowest
value of α for which the bipolaron can form is between
6.0 and 6.8 and the binding energy increases when α in-
creases and decreases when η increases; in other words
for any fixed α it exists a ηc such that for η > ηc the
bipolaron cannot form. The value of ηc given in refer-
ences [20,21] for α = 7, 10, 15 are comparable, whereas
within the BT method (this work) they are almost twice.
When the short range contribution [18] or the correlation
terms between the electrons are taken into account [17,19,
22,25] or when the bipolaron is assimilated to the hydro-
gen molecule (two centers model) [15,16,29], it is found a
larger value of ηc, which is 0.14 for α very large. We stress
that in our approach both the two centers model and the
correlation contribution are taken into account: this jus-
tifies the highest values of ηc found. The comparison of
the total bipolaron energies with those found mainly in
references [20,21] and based on different approximations
shows that the results are compatible and the differences
can be physically justified. Furthermore we compare also
the binding energies. To do this it is necessary to calculate,
for each theory, the energy of the system when the elec-
trons are at infinite relative distance. This value is twice
the polaron self-energy in references [20,21], but in this
work we obtain only the leading term of the limit α� 1. If
the polaron energy were calculated separately at the same
approximation order than that of the bipolaron energy,
the difference between the present calculation and that in
reference [21] tends to disappear. We stress that the above
results are obtained with three method completely differ-
ent: the path-integral technique [21], the extended LLP
method [20] and the BT procedures for the bipolaron in
the present work. In particular we note that the extended

LLP method and that developed in this work, which are
valid in the limit of weak and large α, are very powerful
because they give similar results for the stability of the
bipolaron even in the intermediate region of α.

For the electrons configuration typical of the ground
state of a homonuclear diatomic molecule, we calculate
the ground state energy and also the energies of a set
of vibrational excited states all with zero orbital angular
momentum and for increasing values of the main quan-
tum number n. Such energies do not depend explicitly
on n, which determines instead the distance at which the
polaron-polaron interaction has a minimum, the vibra-
tional frequency and the displaced ionic equilibrium po-
sitions. In other words, the bipolaron excited states are
calculated self-consistently taking into account the polar-
ization of the medium.

In Section 2 we outline the calculation procedure and
in Section 3 we present and discuss the results.

2 Calculation method

We consider the Hamiltonian

H = − h̄2

2m
(
∇2

1 +∇2
2

)
+

1
2

∑
f

h̄ω (qfq−f + pfp−f )

+
e2

ε∞ | r1 − r2 |
+
∑

f

∑
j=1,2

[Vfqf exp(if · rj)

+Vfq−f exp(−if · rj)] (1)

where m is the effective mass of the electron, rj and ∇2
j

indicate the position and the Laplacian operator of the j
particle, ε∞ is the high frequency dielectric constant, f de-
notes the wavenumber of the optical longitudinal phonon
whose non dispersive frequency is ω, qf and pf are the con-
jugate operators of these normal vibrational modes. The
coupling between the electron and the phonons is given by

Vf = i
h̄ω

f

(
4πα
V

) 1
2
(

h̄

2mω

) 1
4

where

α =
e2

2ε∗h̄ω

(
2mω
h̄

) 1
2

and
1
ε∗

=
1
ε∞
− 1
ε0

with ε0 the static dielectric constant and V the volume of
the system. The kinetic energy of the particle is measured
from the bottom of the conduction band.

Following the BT [5,6] procedure we introduce in the
Hamiltonian (1) a suitable parameter such that when it is
zero the ionic kinetic energy disappears in the Hamiltonian
and the problem reduces to that of a particle interacting
with an elastic potential whose center of the force is dis-
placed. This can be done substituting qf with qf

ξ and p
f
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with ξp
f
. The commutation relations [qf , pf

] = ih̄ are pre-
served and the Hamiltonian (1) becomes

H = − h̄2

2m
(
∇2

1 +∇2
2

)
+

1
2

∑
f

h̄ν
(
qf q−f + ξ4pfp−f

)
+

e2

ε∞ | r1 − r2 |
+
∑

f

∑
j=1,2

[
Wfqf exp(if · rj)

+W ∗f q−f exp(−if · rj)
]

(2)

with ω = ξ2ν and Wf = Vf√
2ξ

. The form (2) of the
Hamiltonian is very useful because in the extreme limit
ξ = 0 the phonon coordinates qf appear in parametric
form (adiabatic approximation). The next step is to de-
fine r1 = R1+x1; r2 = R2+x2; R = R1+R2

2 ; x = R2−R1,
where Rj indicates the position of the polaron j, xj the
displacement of the electron with respect to that of the po-
laron, R is the position of the center of mass of the bipo-
laron and x indicates the relative coordinate of the two
polarons. We recall that R must be chosen so that the fi-
nal Hamiltonian does not contain R, but only the relative
Laplacian operator. If this occurs the translational invari-
ance of the system is verified and consequently the total
momentum is conserved. For the phonon coordinates we
write furthermore

qf exp(if ·R1) = uf ,1 + ξQf (3)
qf exp(if ·R2) = uf ,2 + ξQf

where uf ,1 and uf ,2 are the classical components of the
phonon field and Qf indicates the operator which de-
scribes the fluctuations of the phonon field. Obviously

qf =
1
2

[(uf ,1 + ξQf ) exp(−if ·R1)

+ (uf ,2 + ξQf ) exp(−if ·R2)] (4)

Qf =
1
2ξ

[qf (exp(if ·R1) + exp(if ·R2))− uf ,1 − uf ,2] .

Six new electronic parameters are introduced so that we
must impose six new conditions. They are∑

f

fαv
∗
f ,1 {qf exp [if · (R + x)− uf ,1]} = 0 (5)∑

f

fαv
∗
f ,2 {qf exp [if · (R− x)− uf ,2]} = 0

with α = x, y, z and vf ,i c-numbers such that v∗f ,i = v−f ,i.
The relations (5) are the generalization of those we impose
in the case of the polaron. As discussed in [28] for the
polaron it is convenient, but not essential to impose that
uf ,i and vf ,i satisfy also the orthonormality conditions∑

f

fαfβv
∗
f ,1 [uf ,1 + uf ,2 exp (if · ρ)] = δαβ (6)∑

f

fαfβv
∗
f ,2 [uf ,2 + uf ,1 exp (−if · ρ)] = δαβ

where δαβ is the Kronecker δ function. The next calcula-
tion is to express the operators pf and consequently H as
function of the new coordinates [23]; furthermore we de-
velop the Hamiltonian H as a power series of ξ, obtaining

H = H0 + ξH1 + ξ2H2 + ξ3H3 + ξ4H4. (7)

Each operator Hi depends on R, x, x1, x2, Qf and on the
numbers uf ,1 and uf ,2. Their expressions are

H0 = − h̄2

2m
(
∇2

x1
+∇2

x2

)
+

e2

ε∞ | x + x1 − x2 |

+
1
2

∑
f

h̄ν
{
uf ,1 [u−f ,1 + u−f ,2 exp (if · x)]

+ u−f ,2 [uf ,1 exp (−if · x) + uf ,2]
}

+
1
2

∑
f

Wf (uf ,1 + uf ,2 exp (if · x)) exp (if · x1)

+
1
2

∑
f

Wf (uf ,2 + uf ,1 exp (−if · x)) exp (if · x2)

+
1
2

∑
f

W ∗f (u−f ,1

+u−f ,2 exp (−if · x)) exp (−if · x1)

+
1
2

∑
f

W ∗f (u−f ,2

+u−f ,1 exp (if · x)) exp (−if · x2) (8)

2
ξ
H1 =

∑
f

QfWf [(1 + exp (if · x)) exp (if · x1)

+ (1 + exp (−if · x)) exp (if · x2)]

+
∑

f

Q−fW
∗
f [(1 + exp (−if · x)) exp (−if · x1)

+ (1 + exp (if · x)) exp (−if · x2)]

+
∑

f

h̄νQf [u−f ,1 (1 + exp (if · x))

+uf ,2 (1 + exp (−if · x))]

+
∑

f

h̄νQ−f [uf ,2 (1 + exp (−if · x))

+u−f ,1 (1 + exp (if · x))] (9)

8
ξ2
H2 =

∑
f

h̄νQfQ−f [2 + exp (if · x) + exp (−if · x)]

+
∑

f

[
P ′f +

2i
h̄

f · Ff (R,x)
]

×
[
P ′−f −

2i
h̄

f ·F−f (R,x)
]

(10)

2
iξ3

H3 =
∑

f

νf ·
(
P ′f +

2i
h̄

f ·Ff (R,x)
)

G−f (x1,x2)

−
∑

f

νf ·Gf (x1,x2)
(
P ′−f −

2i
h̄

f · F−f (R,x)
)

(11)
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H4 =
2ξ4

h̄2

∑
f

f ·Gf (x1,x2) f ·G−f (x1,x2) (12)

where

Ff (R,x) =
2ξh̄

i
(S∗f∇R + Z∗f∇x) (13)

Gf (x1,x2) =
2ξh̄

i
(Y ∗f ∇x1 +X∗f∇x2)

S∗f =
1
2

(
v∗f ,1 exp

(
− if · x

2

)
+ v∗f ,2 exp

(
if · x

2

))
Z∗f = v∗f ,1 exp

(
− if · x

2

)
− v∗f ,2 exp

(
if · x

2

)
Y ∗f = v∗f ,1 exp

(
−i

f · x
2

)
X∗f = v∗f ,2 exp

(
i
f · x

2

)
Pf =

1
i
∂

∂Qf

P
′

f = exp
(

if · x
2

){
Pf − f ·v∗f ,1

∑
k

k [uk,1

+uk,2 exp (ik · x)]Pk

}
+ exp

(
− if · x

2

){
Pf − f ·v∗f ,2

∑
k

k [uk,2

+uk,1 exp (−ik · x)]Pk

}
+ ...

= exp
(

if · x
2

)
P
′

f ,1 + exp
(
− if · x

2

)
P
′

f ,2 + ...

The final form of the Hamiltonian (7) is very convenient:

a) the zero order term H0 describes the motion of
two electrons interacting with a Coulomb potential
screened by ε∞ and a classical polarization field whose
strength depends on the parameters uf ,1 and uf ,2;
moreover it contains operators in the coordinates x1

and x2, whereas the relative position of the polarons x
appears as a parameter. This means that H0 gives the
extreme adiabatic description of the bipolaron and the
other terms the corrections to this limit;

b) once the solution of H0 has been found, we will see
that the numbers uf ,1 and uf ,2 can be chosen so that
the operator H1 is zero; this means that the successive
correction to H0 is given by H2;

c) the same choice for uf ,1 and uf ,2 and the orthogonality
conditions (5, 6) allow to write in a simple and phys-
ically meaningful form the equation for the correction
H2 to the adiabatic limit.

We proceed considering in the equation (7) the pa-
rameter ξ as a small number, so that we can apply the
perturbation theory to solve the Schrödinger equation

(H −E)Ψ (x1,x2,x,R,Qf ) = 0. (14)

We write

Ψ = Ψ0 + ξΨ1 + ξ2Ψ2.... (15)
E = E0 + ξE1 + ξ2E2....

and determine (E0, E1, E2...) and (Ψ0, Ψ1, Ψ2...) through
the equations

(H0 −E0)Ψ0 = 0 (16)
(H0 −E0)Ψ1 = (E1 −H1)Ψ0

(H0 −E0)Ψ2 = (E2 −H2)Ψ0 + (E1 −H1)Ψ1

...

The zero order equation gives non trivial informations on
the system. Since the operator H0 does not contain neither
the operator Qf nor the vector R and depends paramet-
rically on the vector x, we write

Ψ0 (x1,x2,x,R,Qf ) = χ0 (x1,x2; x)Φ (x,R,Qf ) (17)

with χ0 (x1,x2; x) solution of the equation

(H0 −E0(x))χ0 (x1,x2; x) = 0. (18)

This last equation describes the motion of two electrons,
which interact with a Coulomb force, in the phonon field
with classical coordinates uf ,1 and uf ,2; moreover the rel-
ative position of the two polarons appears in the equation
as a parameter. This makes the equation (18) similar to
that of a diatomic molecule, in which the polaron positions
play the same role of the ions. Furthermore it is worth to
stress that the interaction between the electrons depends
also on the polarization field, which contains also uf ,1 and
uf ,2 as parameters. These last are fixed by the minimiza-
tion of the energy 〈χ0 | H0 | χ0〉 through the conditions

δ〈χ0 | H0 | χ0〉
δwf ,1

=
δ〈χ0 | H0 | χ0〉

δwf ,2
= 0 (19)

where

wf ,1 = u−f ,1 + u−f ,2 exp (−if · x)
wf ,2 = u−f ,2 + u−f ,1 exp (if · x) .

It is found

uf ,1 = −
4W ∗f
h̄ν
〈χ0 | exp (−if · x1) | χ0〉 (20)

uf ,2 = −
4W ∗f
h̄ν
〈χ0 | exp (−if · x2) | χ0〉.

We note that the equations (20) for the displaced positions
of the harmonic oscillators have the same form of the po-
laron case, but they contain an implicit dependence on x.
Using the equations (20) we find that the coefficients of
Qf and Q−f in H1 are zero so that the first correction to
H0 is given by H2. Using the equations (20) and choosing
vf ,1 and vf ,2 in such a way that the conditions (5, 6) are
satisfied, H2 becomes [23]

ξ2H2 = − h̄2

2MR
∇2

R −
h̄2

2Mx
∇2

x

+
1
2

∑
f

h̄ω
(
Q′fQ

′
−f +ΠfΠ−f

)
(21)
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where

MR =
h̄2

3

∑
f

f2

ω
[u−f ,2 + u−f ,1 exp (if · x)]

×
[
u∗−f ,2 + u∗−f ,1 exp (−if · x)

]
(22)

Mρ =
1
4
MR

Q′f = Qf (1 + exp (if · x))

Πf =
1
2

[
π
′

f ,1 exp
(

if · x
2

)
+ π

′

f ,2 exp
(
− if · x

2

)]
π
′

f ,1 = πf − v∗f ,1f ·
∑
k

k [uk,1 + uk,2 exp (ik · x)]πk

π
′

f ,2 = πf − v∗f ,2f ·
∑
k

k [uk,2 + uk,1 exp (−ik · x)]πk

πf = Pf − af and af a number to be fixed in such a way
that the linear terms coefficients of the operator πf of the
phonon kinetic energy is zero. It is worth to note that in
H2 it appears the conjugate operator to R, but not R.
Taking into account the equations (16, 17, 20), the ex-
pression (21) for ξ2H2 and considering that χ0 (x1,x2; x)
is the eigenstate of H0 with eigenvalue E0(x), we obtain[
− h̄2

2MR
∇2

R −
h̄2

2Mx
∇2

x +
1
2

∑
f

h̄ω
(
Q′fQ

′
−f +ΠfΠ−f

)
+E0(x)

]
Φ (x,R,Qf ) = UΦ (x,R,Qf ) (23)

where U = ξ2E2. Since in equation (23), the coordinate R
appears only in the kinetic energy operator, we can write

Φ (x,R,Qf ) = Φ0 (x,Qf) exp (iQ ·R) (24)

where h̄Q is the total momentum of the system and[
− h̄2

2Mx
∇2

x +
1
2

∑
f

h̄ω
(
Q′fQ

′
−f +ΠfΠ−f

)
+E0(x)

]
Φ0 (x,Qf ) =

(
U − h̄2Q2

2MR

)
Φ0 (x,Qf ) . (25)

In this work we consider only the case Q = 0.
As already stressed equation (18) describes the mo-

tion of the electrons in a potential depending on the po-
larization of the medium and containing as parameter
the relative distance between the polarons, as it occurs
in a diatomic homonuclear molecule. The equation (25)
describes the relative motion of the polarons through
the kinetic energy operator depending on x and the
ionic oscillations through the operators Q′f and Πf which
now are also depending on x. The eigenvalue E0(x) of
equation (18) enters in the equation (25) as the poten-
tial energy of the two polarons. We note that the reduced
bipolaron mass Mx depends on the polarization of the
medium and on the relative distance of the polarons. This

fact and the dependence of the operators Q′f and Πf on x
in the equation (25) prevents that it can be solved easily.
Since we will see that the function E0(x) is a very smooth
function around the position of the minimum and that
this last occurs at distance larger than the lattice param-
eter, the sum over the wavevector f verifies the condition
fx� 1 for almost all the vectors f in the Brillouin zone.
The consequence is that exp (if · x) is rapidly oscillating
and therefore Q′f ≈ Qf and Πf ≈ πf , the phonon oper-
ators in (25) become then independent of x and we can
write Φ0 (x,Qf ) = µ(x)θ(Qf ) where(

− h̄2

2Mx
∇2

x +E0(x)
)
µ(x) =Wµ(x) (26)

θ(Qf ) gives the phonon replicas of the spectrum given by
equation (26).

The equations (18) and (26) are the main ones of
this work. The first describes the electrons motion in the
Coulomb and polarization fields as in a diatomic homonu-
clear molecule and the second the relative motion of the
polarons in a potential depending on the electronic con-
figuration. There are also the phonon replicas of the bipo-
laron states, all with the same unrenormalized phonon
frequency.

Our next step regards the solution of equation (18)
with the calculation of E0(x) and then the solution of the
equation (26). It can be shown that the equation (18) with
the relations (20) satisfied can be obtained minimizing the
functional [23,30]

E0(x) = T (x)−U1(x)+U2(x) (27)

T (x) = − h̄2

2m

∫
dx1 dx2 χ0(x1,x2; x)

×
(
∇2

x1
+∇2

x2

)
χ0(x1,x2; x)

U1(x) =
e2

2ε∗

∫
dx1 dx2 dx

′

1 dx
′

2 χ
2
0(x1,x2; x)

× χ2
0(x

′

1,x
′

2; x)
[

1
| x1 − x′1 |

+
1

| x2 − x′2 |

+
1

| x1 − x′1 − x | +
1

| x2 − x′2 − x |

]
U2(x) =

e2

ε∞

∫
dx1 dx2 χ

2
0(x1,x2; x)

1
| x1 − x2 + x |

with respect to the molecular orbital χ0(x1,x2; x). The
solution of the equation (18) and the conditions (20) are
equivalent to the variational problem (27). Two particu-
lar features can be found for x= 0 and x→∞: E0(x) has
its largest value (finite and positive) at x= 0 and is be-
haves as

(
1

1−η − 1
)

1
x when x→∞ apart the constant term

− 2
3πα

2h̄ω.
The calculation of E0(x) can be done as in the case of

the diatomic molecule taking the trial orbital

χ0(x1,x2; x) =N (χa(x1)χb(x2) + χb(x1)χa(x2)) (28)
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Fig. 1. The effective polaron-polaron interaction ∆E0(ρ) in
units 2α2h̄ω as function of the polarons distance ρ in units

aB = ε∗h̄2

e2m
.

where χa and χb indicate single-particle wavefunctions lo-
calized around the polaron positions R1 and R2 respec-
tively, N =

(
2(1 + S2)

)−1/2 is the normalization constant
and S = 〈χa | χb〉 is the overlap integral. Furthermore
each function χ is taken as

χ(xi) = N0(1 + γxi) exp(−γxi) (29)

where N0 is the normalization coefficient and γ a varia-
tional parameter. The minimization of the functional (27)
gives values of γ that we must take in such a way the virial
theorem

2T (x)+U1(x)+x
dE0(x)

dx
+ U2(x) =0 (30)

is satisfied [23,30]. Since the method gives also the energy
of two non interacting particles (limit x→∞ ), the binding
bipolaron energy is defined as

∆E(x) = E0(x)− 2E0(x =∞) (31)

∆E(x) is depending only on the parameter η if the length
unit is the effective Bohr radius aB = ε∗h̄2

e2m and the energy
is measured in unit

2α2h̄ω =
e4m

ε∗2h̄2 · (32)

In Figure 1 we show ∆E(x) for η = 0.0, 0.048, 0.074. We
see that each curve has a value x0 for which ∆E(x0) as-
sumes the minimum value.

The next step is to calculate the spectrum of this
equation.

Table 1. The coefficients which allow the approximate cal-
culation of ∆E0(ρ) in unit 2α2h̄ω as function of the polarons

distance ρ in unit aB = ε∗h̄2

e2m
.

η = 0 η = 0.048 η = 0.074
δa−1

B 0.18 0.19 0.20
A0 −0.00775 0.0 0.0

A1a
−1
B −9.591 × 10−4 3.106 × 10−3 1.01× 10−2

A2a
−2
B −2.328 × 10−3 −4.902 × 10−3 −1.021× 10−2

A3a
−3
B −1.134 × 10−5 7.097 × 10−4 2.104× 10−3

A4a
−4
B 5.428 × 10−5 −4.179 × 10−5 −2.384× 10−4

A5a
−5
B −3.189 × 10−6 1.156 × 10−6 1.769× 10−5

A6a
−6
B −1.662 × 10−7 −1.149 × 10−8 −8.402× 10−7

A7a
−7
B 1.831 × 10−8 −9.772 × 10−11 2.254× 10−8

A8a
−8
B −4.000× 10−10 2.168 × 10−12 −2.546 × 10−10

Mρ(α
4m)−1 0.0232 0.0195 0.0181

3 Calculation of the bipolaron vibrational
states

The variational calculation of E0(x) by the functional (27)
allows to approximate ∆E0(x) by the analytical form

∆E0(x) =

(
B

ρ
+ exp(−δx)

8∑
n=−1

Anx
n

)
e4m

ε∗2h̄2 (33)

where, to assure that ∆E0(x) has a finite value for x = 0,
we must have

B = −A−1 =
(

1− 1
1− η

)
aB. (34)

In Table 1 the values of the coefficients δ and An are given.
The radial part of equation (26)[
− h̄2

2Mx

d2

dx2
+

(k̄ − 1)(k̄ − 3)
8Mρx2

+∆E0(x)
]
Rn,l = En,lRn,l

(35)

where k̄ = N + 2l (N is the number of spatial dimension
and l(l + N − 2)h̄2 the eigenvalue of the square of the
momentum angular operator) cannot be solved exactly.
However a satisfactory approximation to determine the
radial solution is the so called 1

N shifted expansion [31]
which can be applied when the potential is smooth. The
whole spectrum is obtained. In this method the expan-
sion parameter is k−1, with k = N + 2l − a and a a
shifted expansion parameter not given a priori. The ra-
dial Schrödinger equation is written{
− h̄2

2Mx

d2

dx2
+ k2

[
h̄2
(
1− 1−a

k

) (
1− 3−a

k

)
8Mxx2

+
∆E0(x)
Q

]}
Rn,l = En,lRn,l (36)

where k =
√
Q to assure the identity of the equation (36)

with (35). If k is a large parameter, the leading term
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of the potential is given by

Veff(x) = k2

(
h̄2

8Mxx2
+
∆E0(x)
Q

)
(37)

and Q is fixed by the condition dVeff (x)
dx = 0. If x0 satisfies

such condition, we obtain

Q =
4Mxx

3
0E

(1)
0 (x0)

h̄2 (38)

where E(n)
0 (x) = dnE0(x)

dxn . Furthermore, developing Veff(x)
to second order around x0, we obtain the oscillation
frequency

Ω =
h̄2

2Mxx2
0

(
3 + x0

E
(2)
0 (x0)

E
(1)
0 (x0)

) 1
2

. (39)

The next step is to develop the potential in the radial
equation (36) in the adimensional coordinate

u =
k

1
2

x0
(x− x0).

Equation (36) becomes

[
− h̄2

2Mx

d2

du2
+

kh̄2

8Mx

(
1 +

3u2

k
− 4u3

k
3
2

+
5u4

k2
· · · ·

)]
Rn,l

+
(

(1− a)(3− a)h̄2

8kMx
− (2− a)h̄2

4Mx

)(
1− 2u

k
1
2

+
3u2

k

−4u3

k
3
2
· · · ·

)
Rn,l +

x2
0k

Q

(
∆E0(x0) +

1
2k
E

(2)
0 (x0)x2

0u
2

+
1

6k
3
2
E

(3)
0 (x0)x3

0u
3......

)
Rn,l =

1
k
Enlx

2
0Rn,l. (40)

We see from (40) that the leading term (∝ k2 ) gives a con-
stant contribution to the energy; those ∝ k give the har-
monic oscillator Hamiltonian whose frequency is Ω plus
the constant term − (2−a)h̄2

4Mρx2
0

. The quantity a is obtained
through the condition(

n+
1
2

)
h̄Ω − (2− a)h̄2

4Mxx2
0

= 0. (41)

Substituting the value of a obtained through this equation
in the definition of k and taking into account that Q = k2,
we obtain the equation

2l+N − 2 + (2n+ 1)

(
3 + x0

E
(2)
0 (x0)

E
(1)
0 (x0)

) 1
2

=

(
4Mρx

3
0

E
(1)
0 (x0)
h̄2

) 1
2

(42)

Table 2. The binding energies of the large bipolaron in unit
2α2h̄ω for α = 7 and η = 0, 0.048, 0.074.

n η = 0.0 η = 0.048 η = 0.074
0 −1.466 × 10−2 −8.043× 10−3 −3.760 × 10−3

1 −1.020 × 10−2 −3.877× 10−3 −−
2 −6.171 × 10−3 −4.239× 10−3 −−
3 −2.354 × 10−3 −− −−

Table 3. The binding energies of the large bipolaron in unit
2α2h̄ω for α = 10 and η = 0, 0.048, 0.074.

n η = 0.0 η = 0.048 η = 0.074
0 −1.588 × 10−2 −9.212× 10−3 −4.990 × 10−3

1 −1.355 × 10−2 −6.983× 10−3 −2.669 × 10−3

2 −9.438 × 10−3 −4.976× 10−3 −6.284 × 10−4

3 −7.511 × 10−3 −3.135× 10−3 −−
4 −5.624 × 10−3 −1.446× 10−3 −−
5 −3.754 × 10−3 −− −−
6 −1.977 × 10−3 −− −−
7 −6.035 × 10−4 −− −−

which allows, for any fixed n and l, to determine x0. The
other corrections to the energy are obtained with the stan-
dard perturbation theory. Finally we obtain the spectrum

Enl =
k2

x2
0

[
h̄2

8Mx
+ x2

0

∆E0(x0)
Q

+
γ(1)

k2
+
γ(2)

k3
+O

(
1
k4

)]
(43)

where γ(1) and γ(2) give the first and the second perturba-
tive correction to the energy. We see that the leading part
of the spectrum is obtained from first and second terms
of the equation (43).

In Tables 2, 3 and 4 are shown the binding energy (in
unit 2α2h̄$) of the bipolaron vibrational states for η =
0.0, η = 0.048 and η = 0.074 for α = 7, 10, 15 respectively.

The box without numbers mean that, for the values of
η and α considered, do not exist bound states.

4 Discussion of the results

In this work we have calculated the spectrum of the in-
ternal vibrational bound states of the bipolaron using the
Bogolyubov-Tyablikov method. It results that the bipo-
laron states are the product of the free wavefunction of
the center of mass of the polarons pair and of vibra-
tional states describing the relative motion of the polarons
around equilibrium positions. As found also by other au-
thors [20,21] the bipolaron can form only if α is larger
than a critical value αc ∼ 6 for η = 0. When this oc-
curs the energy difference between two successive states is
smaller than the unrenormalized phonon energy and the
energy difference between the ground and the highest ex-
cited state is larger than the phonon energy (i.e. there
are phonon replicas of the ground state with energy lower
than the highest excited state). Consequently the bipo-
laron absorption coefficient and conductivity has a very
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Table 4. The binding energies of the large bipolaron in unit
2α2h̄ω for α = 15 and η = 0, 0.048, 0.074.

n η = 0.0 η = 0.048 η = 0.074
0 −1.657 × 10−2 −9.865 × 10−3 −5.682 × 10−3

1 −1.546 × 10−2 −8.812 × 10−3 −4.572 × 10−3

2 −1.442 × 10−2 −7.811 × 10−3 −3.528 × 10−3

3 −1.343 × 10−2 −6.864 × 10−3 −2.546 × 10−3

4 −1.249 × 10−2 −5.962 × 10−3 −1.624 × 10−3

5 −1.158 × 10−2 −5.098 × 10−3 −7.479 × 10−4

6 −1.069 × 10−2 −4.266 × 10−3 −−
7 −9.824 × 10−3 −3.463 × 10−3 −−
8 −8.967 × 10−3 −2.689 × 10−3 −−
9 −8.121 × 10−3 −1.943 × 10−3 −−

10 −7.283 × 10−3 −1.543 × 10−3 −−
11 −6.451 × 10−3 −5.471 × 10−4 −−
12 −5.621 × 10−3 −− −−
13 −4.793 × 10−3 −− −−
14 −3.964 × 10−3 −− −−
15 −3.138 × 10−3 −− −−
16 −2.325 × 10−3 −− −−
17 −1.554 × 10−3 −− −−
18 −8.797 × 10−4 −− −−
19 −4.081 × 10−4 −− −−
20 −3.242 × 10−4 −− −−

complicated structure. The number of the bound states in-
creases when α increases and decreases when η increases.
Each state of the spectrum is characterized by two pa-
rameters: the relative equilibrium position of the polarons
x0 and the quantities uf ,1 and uf ,2 which describe the
displaced equilibrium position of the ionic vibrations. The
first quantity x0 depends self-consistently on the quantum
numbers of the bipolaron state we are considering and on
the effective polaron-polaron interaction; it increases when
the quantum numbers and η increase and it is independent
of α. The quantities uf ,1 and uf ,2 are different from zero
and depend on f only in a range around f = 0; this range
and the values of uf ,1 and uf ,2 become larger when α in-
creases and smaller when x0 or η increases. Since, for fixed
α and η, x0 increases when the principal quantum number
n of the state increases and the displacement of the equi-
librium position of the ions decrease, the conclusion is that
the bipolaron forms because there is a local polarization
of the medium depending on the state we are consider-
ing. The polarization becomes smaller and its extension
increases when n increases.

We stress that the electrons wavefunction is taken
of the ground state type of the homonuclear diatomic
molecule; obviously we could also consider electron states
with a different structure as it occurs in the physics of the
molecules.

The next logical step is the comparison of our results
with those obtained with the path-integral technique [21]
and the variational approach by Lee-Low and Pines [2].
The comparison shows:

a) the values of ηc calculated in the present work are
almost twice than those in references [20,21], which

are ηc = 0.02, 0.04, 0.06 and ηc = 0.004, 0.05, 0.066
respectively for α = 7, 10, 15. Highest values of ηc are
found or including correlation effects between the elec-
trons or considering the bipolaron as a two centers sys-
tem [15–19,22,25]. We stress that both effects are taken
into account in this work;

b) for η = 0, the smallest value of α for which the bipo-
laron begins to form is very near to that found in
previous works using approaches very different [20,21]
α ' 6;

c) the bipolaron total energies calculated in this work
for α = 7, 10, 15 and η = 0 are (−11.825h̄ω,
−24.376h̄ω, −55.156h̄ω), those in reference [20] are
(−14.056h̄ω, −20.240h̄ω, −30.736h̄ω) and those in [21]
are (−16.283h̄ω, −28.631h̄ω, −59.058h̄ω). This indi-
cates that the three theories give coherent values even
in the intermediate regime of α;

d) for η = 0 and α = 7, 10, 15, the binding energies of
the lowest bound states in this work are (−1.437h̄ω,
−3.176h̄ω, −7.456h̄ω). In references [20,21] for α =
7, 10, 15 it was found (−0.056h̄ω,−0.24h̄ω,−0.736h̄ω)
and (−0.058h̄ω, −1.650h̄ω, −5.608h̄ω) respectively. To
find the binding energy in our case we have taken the
polaron energy − 2

3πα
2h̄ω = E0(ρ = ∞). We stress

that the calculation in this work does not allow the
comparison between the bipolaron and polaron ener-
gies at the same order of approximation. If this were
done the binding energy found in this work becomes
more near to that found in references [20,21]. Finally
we must again remember that the present calculation
is done considering the bipolaron as two centers system
and that the correlation between electrons is taken into
account.

In summary we have calculated the internal vibrational
states of the large bipolaron by making use of the BT
method. The features of the states both for what it con-
cerns the electronic and the ionic parts of the wavefunc-
tion have been discussed. Moreover the comparison of our
results with those obtained within different approaches
shows that the theory developed in this work, although in
principle valid for very high values of α, gives good results
even in the range of the intermediate values of α. This
provides an important check of the proposed approach.
The knowledge of the spectrum for intermediate values of
the electron-phonon coupling constant can be the start-
ing point for the calculation of quantities of experimental
interest.
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